游轮上的雷达有什么用 轮船上的雷达有什么作用

导读:游轮上的雷达有什么用 轮船上的雷达有什么作用 1. 轮船上的雷达有什么作用 2. 船上的雷达对人体有多大危害? 3. 船用雷达是一种什么雷达 4. 船用雷达在陆地上能用吗 5. 船上有雷达吗 6. 船用雷达有什么用 7. 船上的雷达是什么样子的 8. 轮船上的雷达有什么作用和用途

1. 轮船上的雷达有什么作用

雷达的优点是白天黑夜均能探测远距离的目标,且不受雾、云和雨的阻挡,具有全天候、全天时的特点,并有一定的穿透能力。

因此,它不仅成为军事上必不可少的电子装备,而且广泛应用于社会经济发展(如气象预报、资源探测、环境监测等)和科学研究(天体研究、大气物理、电离层结构研究等)。星载和机载合成孔径雷达已经成为当今遥感中十分重要的传感器。

以地面为目标的雷达可以探测地面的精确形状。其空间分辨力可达几米到几十米,且与距离无关。雷达在洪水监测、海冰监测、土壤湿度调查、森林资源清查、地质调查等方面也显示出了很好的应用潜力。

扩展资料:

起源

雷达的出现,始于二战前。虽然美、法等国亦注意到“以无线电探测目标的可能”,这在当时的学术界并不是秘密,但真正开始研制实用设备的是英、德2国。

因北大西洋时常恶劣的天气,货运繁忙的伦敦港、朴茨茅斯港,及汉堡港时常发生轮船碰撞事故,英、德在两战间开发雷达的本意是在夜间或雾天协助钢铁货轮航行;而欲实现以无线电探测目标,需要大功率的电磁波发射源,这在当时是物理界的前沿技术。

后发展出磁控管等一系列至今仍属高端技术的产品,历史证明各国均为此投入了大量资金和专业人员。因此英、德早期的研究人员均不约而同地找到政府申请投资,而政府又要求项目具有军事价值作为回报,从而在相互不知情的情况下,两国的雷达项目均成为了机密的军事项目。

2. 船上的雷达对人体有多大危害?

船上安装了S波段统一测控系统、C波段统一测控系统和C波段脉冲雷达等大型测控设备,能够完成对火箭、卫星、飞船等各类航天飞行器的海上跟踪测控任务,并能与任务中心进行实时通信和数据交换。

中星2E卫星任务中,远望5号船捕获目标迅速,准确高效向西安卫星测控中心和西昌卫星发射中心发送实时测控数据,有效保障了多项关键动作,并为卫星定轨提供数据支撑,为卫星精确入轨打下坚实基础。

3. 船用雷达是一种什么雷达

看雷达要先确定雷达图像位置,本船位置在中间,再就是确定船首向上还是北向上等.这样一来你就能知道回波是在你船的什么方向和位置.物标回波特点是:目标越大,回波越大.金属回波最强.

4. 船用雷达在陆地上能用吗

中文详细介绍

FR-21XX系列雷达的特点:

 高亮度21寸多色高分辨率显示器.

 新的高速高密度门阵列微处理技术和专业软件.

 扫描器壳体是由新型铝材铸造的并且采用了新系列的辐射器.

 简易的组合键和分立键操作,旋转控制钮和菜单操作.

 标准配备EPA(电子测绘装置) 雷达自动测绘装置(ARPA),优于IMO和IEC标准.

 任何测绘模式下可靠的CPA(接近目标的最近点)和TCPA(到达目标的预计时间)告警,精确的目标数据.

 独立和综合的配置.

 符合IMO MSC.64和IEC A.823: 1996船用雷达,高速船舶雷达A.820(19)和ARPA A.823(19)标准.

型号:

FR-2115,FR-2115-B X波段, 输出功率12KW.

功能 IMO类型 正规类型

范围值 0.125,025,0.5,0.75,1.5,3,6,

12,24,48,,96nm FR-2115/2115-B

0.125,025,0.5,0.75,1.5,3,6,

12,24,48, 72nm

告警区 雷达:目标告警区(TAZ)

第一个TAZ在3-6海里之间,第二个TAZ在第一个TAZ有效的任何地区。

ARPA:警戒区

第一个警戒区位于3~6海里之间以0.5海里为中心的范围。

第二个警戒区在以0.5海里为中心的任何位置,但是需要第一个警戒区是正常使用的情 下。

雷达:目标告警区(TAZ)

第一个TAZ和第二个TAZ可在任何位置,告警区可选择是内区或外区模式。

ARPA:警戒区

第一个警戒区在以0.5海里为中心的任何位置.

第二个警戒区在以0.5海里为中心的任何位置.

双倍放大 不可用。 在菜单上是可用的.

回声颜色 黄色和绿色有16种色度。 目标回波可以有3种颜色,底色有16种

5. 船上有雷达吗

船用雷达是一种传统的无线电导航设备,在船舶近海定位、引导船舶进、出港,窄航道航行以及在避碰中发挥作用。GPS导航仪在海洋船舶中已普遍使用,它与雷达相比具有全球、连续、实时、高精度、多功能等优点。随着海用信标差分GPS(DGPS)基台的不断建立,可将使用GPS C/A码的定位精度提高到米量级。因此,还可应用DGPS或GPS导航仪来改善雷达的使用性能,测定雷达测距、测向精度,弥补雷达在避碰和锚位监视等方面的某些局限性。

2 GPS与雷达的定位与导航功能

2.1 定位功能

船用雷达发射无线电波,并接收该电波从目标反射的回波,在显示器上一目了然地显示周围物标相对于本船的图像。测定一个或几个固定物标相对于本船的方位和距离,可在海图上作出船位。由此可见,雷达对于船舶在近岸海区或窄航道上安全航行发挥重要作用,特别是在雾航中更加显示它的重要性。但是,由于受到雷达电波传播的视距所限,探测物标的距离通常只有几至几十海里,不能用于远洋定位。 GPS导航仪同时跟踪3颗或4颗卫星信号,测定到达卫星的伪距,通过导航仪内部计算机解算,实现实时、连续、全球、高精度定位,可弥补雷达不能实现远洋定位以及定位不连续、定位操作工作量大等缺点。

2.2 导航功能

30m左右的中型引航船。考虑到天津港冬季多大风,

锚地无遮蔽,以及在海况好时的工作方便,可考虑配置1艘不小于40m的大型子母引航船。天气及海况不好时,可单独执行任务;海况好时,可将其携带的2艘高速艇放下,共同执行任务。如子母船的设想不能成立,也可只配置1艘大型引航船,另配置2艘高速艇。 无论任何型号的引航船(艇),在设计上必须考虑到靠船的要求和引航员上、下船的方便。

3.3 对速度和操纵性能的要求 引航船在速度上不能低于16kn。 高速艇一般不能低于20kn。 从操纵灵活的要求出发,采用可变螺距船;驾驶操纵系统,应以方便1人操作为原则;大型引航船,还应加装首侧推器。

3.4 要配置先进的雷达及通信设备

另外,船身应为白色,并在明显处标注英文“引航(PILOT)”。

以上仅是对引航船提出一些的初步设想,根据规范化及国际大港口的要求来考虑,配置专用引航船是非常必要的。

普通船用雷达要获得航速、航向航迹等航行数据,需通过几次定位,由人工标绘实现。自动雷达标绘仪(ARPA)虽然自动显示上述数据,但存在跟踪延迟和雷达、计程仪、罗经等传感器引入的误差。另外,由于ARPA设备昂贵,不能在所有的船上安装。 GPS导航仪采用现代电子计算机技术,可实时计算并显示航速,航向,航迹偏差,风、流压差,还具有设置航路点、计划航线、显示到达航路点的距离、时间等导航功能。

3 GPS的避碰功能

船用雷达测定海上运动物标和静止物标的距离、方位等相对参数,通过人工标绘得到最近会遇距离(CPA)和到达最近会遇点的时间(TCPA)等避碰数据,驾驶员根据这些数据及时采取避让措施。但是,有些物标反射回波微弱,操作人员难以看清它们的回波图像,ARPA有可能对它们漏跟踪或错误跟踪而不能提供避碰数据。在气象条 恶劣时,出现严重的海浪回波干扰或雨、雪回波干扰,上述丢失物标的现象时有出现。对于未露出海面的暗礁、沉船、浅滩等潜在物标,雷达更是无能为力。根据海图和航海通告事先查出在航线附近水面危险的小物标和水下的潜在障碍物,把它们作为航路点在GPS导航仪中存贮,并根据障碍物和船舶状况设置报警范围。在航行中,驾驶员可以随时检查这些物标相对于本船的距离和方位。一旦船舶进入所设定的报警范围的边界,GPS导航仪立即发出报警,驾驶员作出避让措施。

4 GPS辅助雷达定位

雷达定位的难点是正确识别物标,对于不大熟悉雷达观测的驾驶员更是如此。若用雷达观测几个比较接近的非独立物标,由于物标回波图像边缘扩大、失真等原因,这些物标的回波图像难以清楚分开,因而观测雷达图像找不出与海图所对应的物标,或把一物标回波图像错认为另一物标的回波图像,获得错误的雷达船位或造成不能允许的船位误差。又由于在海图上查找雷达回波反射点要耽误时间,因而定位是不连续、不实时的,获取船位的时间滞后于实测船位的时间。滞后时间的大、小与观测者对雷达观测的熟练程度有关。

普通的GPS导航仪,除了直接存贮任一位置的经、纬度以外,还可输入当前位置到达雷达测量位置的距离、方位,计算并显示物标的所在位置的经、纬度。若把雷达测定的物标的距离、方位数据迅速输入GPS导航仪,根据它显示的经、纬度数据,可迅速在海图上找到对应的物标,由此作出雷达船位。用此方法取得的雷达船位比用常规法作得的船位准确、可靠,避免因识别反射物标错误而引起雷达船位错误或偏差,标绘所用的时间也可明显缩短。如果将雷达测定的距离和方位数据通过接口和控制装置输入GPS导航仪,导航仪就不需人工干预直接显示相应物标所在位置的经、纬度。

5 锚位监视功能

在船舶锚泊时,船用雷达可通过测定陆标的方位和距离监视本船的锚位偏离状况,也可通过测定到达他船的方位和距离监视他船的漂移状况,一旦发现本船和他船走锚,便可采取相应的措施避免发生事故。GPS的锚位监视是以锚位点为中心,输入的设定距离为半径,一旦天线所在位置超出此范围,即被认为走锚而发出报警。监控半径大、小的选择要根据GPS导航仪的定位精度、周围环境及船舶状况而定。由于GPS具有较高的定位精度,可以减小设置监控半径,提高监控灵敏度。若采用DGPS可进一步减小监控半径,提高监控灵敏度。通常,GPS导航仪的最小设置监控半径为0.1n mile。 虽然GPS不能监视他船的锚移状况,但对本船的锚移监视具有不需通过测定物标定位、监视灵敏度高、快速实时等优点。GPS与雷达相结合的锚位监控手段,对防止大风造成的损失可起到很大的作用。

6 DGPS测定船用雷达测向、测距误差

7 GPS与雷达配合应用需注意的问题

6. 船用雷达有什么用

海上灯塔实际用途:

1、护航照明

灯塔是建于航道关键部位附近的一种塔状发光航标,是一种固定的航标,其基本作用是引导船舶航行或指示危险区(常用来标志危险的海岸、险要的沙洲或暗礁以及通往港嘴的航道);

2、地理坐标

伴随着科学技术的迅猛发展,雷达应答器、DGPS系统、AIS船舶自动识别系统综合导航体系的建立,灯塔的导航作用越来越被弱化,导航价值在日益减少,但其拥有着潜在的历史文化价值,成为了各国追捧的人文地理坐标;

3、军事防御

灯塔有海上烽火台之说,过去也被用于军事用途,用以进行海防瞭望和防范偷渡。一般与 塔临近的还有炮台、城堡等防御设施;

4、宣誓主权

在争议海域,灯塔、哨所、界碑等都常常被当成是主权的象征。

灯塔是建于航道关键部位附近的一种塔状发光航标。灯塔是一种固定的航标,用以引导船舶航行或指示危险区。现代大型灯塔结构体内有良好的生活、通信设施,可供管理人员居住,但也有重要的灯塔无人看守。根据不同需要,设置不同颜色的灯光及不同类型的定光或闪光。灯光射程一般为15-25海里。

7. 船上的雷达是什么样子的

雷达反射是一种附在船上使其在雷达上更清晰可见的装置。雷达反射器由若干金属片组成,这些金属片相互交叉,形成一个能强烈反射雷达的几何形状。有许多不同的款式和设计可供选择,一些划船安全组织已经对一系列雷达反射器进行了测试,以确定哪种型号和设计最有效,得到的结果似乎表明,即使使用雷达反射器,船只有时很难在雷达上被发现。

8. 轮船上的雷达有什么作用和用途

雷达是现代战争必不可少的电子装备。它不仅应用于军事,而且也应用于国民经济(如交通运输、气象预报和资源探测等)和科学研究(如航天、大气物理、电离层结构和天体研究等)以及其他一些领域。发展简史 雷达的基本概念形成于20世纪初。但是直到第二次世界大战前后,雷达才得到迅速发展。

早在20世纪初,欧洲和美国的一些科学家已知道电磁波被物体反射的现象。

1922年,意大利G.马可尼发表了无线电波可能检测物体的论文。

美国海军实验室发现用双基地连续波雷达能发觉在其间通过的船只。

1925年,美国开始研制能测距的脉冲调制雷达,并首先用它来测量电离层的高度。

30年代初,欧美一些国家开始研制探测飞机的脉冲调制雷达。

1936年,美国研制出作用距离达40公里、分辨力为457米的探测飞机的脉冲雷达。

1938年,英国已在邻近法国的本土海岸线上布设了一条观测敌方飞机的早期报警雷达链。

早期报警雷达链 第二次世界大战期间,由于作战需要,雷达技术发展极为迅速。

就使用的频段而言,战前的器件和技术只能达到几十兆赫。

大战初期,德国首先研制成大功率三、四极电子管,把频率提高到500兆赫以上。

这不仅提高了雷达搜索和引导飞机的精度,而且也提高了高射炮控制雷达的性能,使高炮有更高的命中率。

1939年,英国发明工作在3000兆赫的功率磁控管,地面和飞机上装备了采用这种磁控管的微波雷达,使盟军在空中作战和空-海作战方面获得优势。

大战后期,美国进一步把磁控管的频率提高到10吉赫,实现了机载雷达小型化并提高了测量精度。

在高炮火控方面,美国研制的精密自动跟踪雷达SCR-584,使高炮命中率从战争初期的数千发炮弹击落一架飞机,提高到数十发击中一架飞机。

40年代后期出现了动目标显示技术,这有利于在地杂波和云雨等杂波背景中发现目标。

高性能的动目标显示雷达必须发射相干信号,于是研制了功率行波管、速调管、前向波管等器件。

50年代出现了高速喷气式飞机,60年代又出现了低空突防飞机和中、远程导弹以及军用卫星,促进了雷达性能的迅速提高。

60~70年代,电子计算机、微处理器、微波集成电路和大规模数字集成电路等应用到雷达上,使雷达性能大大提高,同时减小了体积和重量,提高了可靠性。

在雷达新体制、新技术方面,50年代已较广泛地采用了动目标显示、单脉冲测角和跟踪以及脉冲压缩技术等;60年代出现了相控阵雷达;70年代固态相控阵雷达 脉冲多普勒雷达问世。

在中国,雷达技术从50年代初才开始发展起来。中国研制的雷达已装备军队。

中国已经研制成防空用的二坐标和三坐标警戒引导雷达、地-空导弹制导雷达、远程导弹初始段靶场测量雷达和再入段靶场测量与回收雷达。

中国研制的大型雷达还用于观测中国和其他国家发射的人造卫星。

在民用方面,远洋轮船的导航和防撞雷达、飞机场的航行管制雷达以及气象雷达等均已生产和应用。

中国研制成的机载合成孔径雷达已能获得大面积清晰的测绘地图。

中国研制的新一代雷达均已采用计算机或微处理器,并应用了中、大规模集成电路的数字式信息处理技术,频率已扩展至毫米波段。工作原理 雷达天线把发射机提供的电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波。

这些反射波载有该物体的信息并被雷达天线接收,送至雷达接收设备进行处理,提取人们所需要的有用信息并滤除无用信息。 雷达可分为连续波雷达和脉冲雷达两大类。

单一频率连续波雷达是一种最为简单的雷达形式,容易获得运动目标与雷达之间的距离变化率(即径向速度)。

它的主要缺点是:

①无法直接测知目标距离,如欲测知目标距离,则必须调频,但用调频连续波测得的目标距离远不及脉冲雷达精确;

②在多目标的环境中容易混淆目标;③大多数连续波雷达的接收天线和发射天线必须分开,并要求有一定的隔离度。脉冲雷达 容易实现精确测距,而且接收回波是在发射脉冲休止期内,不存在接收天线与发射天线隔离的问题,因此绝大多数脉冲雷达的接收天线和发射天线是同一副天线。由于这些优点,脉冲雷达(图1)在各种雷达中居于主要地位。这种雷达发射的脉冲信号可以是单一载频的矩形脉冲,如普通脉冲雷达的情形;也可以是编码或调频形式的脉冲调制信号,这种信号可以增大信号带宽,并在接收机中经匹配滤波输出很窄的脉冲,从而提高雷达的测距精度和距离分辨力,这就是脉冲压缩雷达。此外,雷达发射的相邻脉冲之间的相位可以是不相干(随机)的,也可以是具有一定规律的相干信号。相干信号的频谱纯度高,能得到好的动目标显示性能。目标定位 对地面和海面目标定位,就是测量它相对于雷达的距离和方位。对空中目标的定位则需要同时测量距离、方位和高度,这种雷达称为三坐标雷达。测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因为电磁波以光速传播,据此就能换算成目标的精确距离。目标方位是利用天线的尖锐方位波束来测量。在同样窄的波束条件下,用单脉冲方法可得到比单一波束更高的测量精度(见跟踪雷达)。仰角靠窄的仰角波束测量。根据目标的仰角和距离就能通过计算得到目标高度,精确的仰角同样可用单脉冲方法获得。发射机 它可以是一个磁控管振荡器。这是微波雷达发射机早期的方式,简单的雷达仍在沿用。现代的高性能雷达要求有相干信号和高的频率稳定度。因此就需要用晶体振荡器作为稳定频率源,并通过倍频功率放大链得到所需的相干性、稳定度和功率。放大链的末级功率放大管最常用的是功率行波管或速调管。频率低于600兆赫时,可以使用微波三极管或微波四极管。脉冲调制器 它产生供发射机开关用的调制脉冲。它必须具有发射高频脉冲所需要的脉冲宽度,并提供开关发射管所需的调制能量。使用真空管或晶体管作为放电开关,称为刚管调制;使用氢闸流管对人工线储能作放电开关,称为软管调制。此外,也可用电磁元件 作脉冲开关调制。对调制脉冲的一般要求是起边和落边较陡,脉冲顶部平坦。收发开关 它在发射脉冲时切断接收支路,尽量减少漏入接收支路的发射脉冲能量;当发射脉冲结束时断开发射支路,由天线接收的回波信号经收发开关全部进入接收支路。收发开关通常由特殊的充气管组成。发射时,充气管电离打火形成短路状态,发射脉冲通过后即恢复开路状态。为了不阻塞近距离目标回波,充气管从电离短路状态到电离消除开路状态的时间极短,通常为微秒量级,对于某些雷达体制为纳秒量级。天线 雷达要有很高的目标定向精度,这就要求天线具有窄的波束。搜索目标时,天线波束对一定的空域进行扫描。扫描可以采用机械转动方法,也可以采用电子扫描方法。大多数天线只有一个波束,但有的天线同时有几个波束。分布在天线副瓣中的能量应尽量小,低副瓣天线是抗干扰所需要的。接收机 一般采用超外差式。在接收机的前端有一个低噪声高频放大级。放大后的载频信号和本振信号混频成中频信号。模拟式信号处理(如脉冲压缩和动目标显示等)在中频放大级进行,然后检波并将目标信号输至显示器。采用数字信号处理时,为了降低处理运算的速率,应该把信号混频至零中频;为了保持相位信息,零中频信号分解成二个互相正交的信号,分别进入不同的两条支路,然后对这两条支路作数字式处理,再将处理结果合并。 雷达,将电磁能量以定向方式发设至空间之中,藉由接收空间内存在物体所反射之电波,可以计算出该物体之方向,高度及速度.并且可以探测物体的形状,以地面为目标的雷达可以探测地面的精确形状。 1922年美国泰勒和杨建议在两艘军舰上装备高频发射机和接收机以搜索敌舰。1924年英国阿普利顿和巴尼特通过电离层反射无线电波测量赛层的高度。美国布莱尔和杜夫用脉冲波来测量亥维塞层。1931年美国海军研究实验室利用拍频原理研制雷达,开始让发射机发射连续波,三年后改用脉冲波1935年法国古顿研制出用磁控管产生16厘米波长的撜习窖捌鲾,可以在雾天或黑夜发现其他船只。这是雷达和平利用的开始。1936年1月英国W.瓦特在索夫克海岸架起了英国第一个雷达站。英国空军又增设了五个,它们在第二次世界大战中发挥了重要作用。 1937年美国第一个军舰雷达XAF试验成功。1941年苏联最早在飞机上装备预警雷达。1943年美国麻省理工学院研制出机载雷达平面位置指示器,可将运动中的飞机柏摄下来,他胶发明了可同时分辨几十个目标的微波预警雷达。1947年美国贝尔电话实验室研制出线性调频脉冲雷达。50年代中期美国装备了超距预警雷达系统,可以探寻超音速飞机。不久又研制出脉冲多普勒雷达。1959年美国通用电器公司研制出弹道导弹预警雷达系统,可发跟踪3000英里外,600英里高的导弹,预警时间为20分钟。1964年美国装置了第一个空间轨道监视雷达,用于监视人造地球卫星或空间飞行器。1971年加拿大伊朱卡等3人发明全息矩阵雷达。与此同时,数字雷达技术在美国出现。 雷达按照用途可以分为军用雷达和民用雷达,军用雷达包括警戒雷达,制导雷达,敌我识别等;而民用雷达包括导航雷达,气象雷达,测速雷达等。军用雷达 民用雷达天气雷达是探测大气中气象变化的千里眼、顺风耳。天气雷达通过间歇性地向空中发射电磁波(脉冲),然后接收被气象目标散射回来的电磁波(回波),探测400多千米半径范围内气象目标的空间位置和特性,在灾害性天气,尤其是突发性的中小尺度灾害性天气的监测预警中发挥着重要的作用 。天气雷达雷达一词来自英语radar,无线电波探测装置。它号称“千里眼”。看到“雷”这个字,马上会让人想到天边的雷鸣和闪电,突出了一个快字。自然,雷达这种“千里眼”的作用也就让人印象更深了。

Hash:272c433681301e7111bfbf572f837841884f6b0d

声明:此文由 区块大康 分享发布,并不意味本站赞同其观点,文章内容仅供参考。此文如侵犯到您的合法权益,请联系我们 kefu@qqx.com